当前位置:科普知识站>综合知识>

冻干仓加热板温度持续下降的原因

综合知识 阅读(2.57W)

冻干仓加热板温度持续下降的原因

1、加热板本身故障或老化:加热板长期使用后可能会出现故障或老化,导致温度无法保持或持续下降。

2、供电或控制系统异常:加热板的供电或控制系统出现问题时,可能影响加热板的温度调节和控制,导致温度下降。

3、冻干仓内部条件改变:冻干仓内部温度、湿度、空气流通等条件发生变化时,可以对加热板的温度产生影响,导致温度下降。

4、冻干过程中的水分蒸发:在冻干过程中,物料严重脱水会导致温度下降,这是正常现象。

5、其他外部因素:例如环境温度、气压、风速、人为因素等,均有可能影响冻干仓加热板温度。

小编还为您整理了以下内容,可能对您也有帮助:

1、加热板本身故障或老化:加热板长期使用后可能会出现故障或老化,导致温度无法保持或持续下降。

2、供电或控制系统异常:加热板的供电或控制系统出现问题时,可能影响加热板的温度调节和控制,导致温度下降。

3、冻干仓内部条件改变:冻干仓内部温度、湿度、空气流通等条件发生变化时,可以对加热板的温度产生影响,导致温度下降。

4、冻干过程中的水分蒸发:在冻干过程中,物料严重脱水会导致温度下降,这是正常现象。

5、其他外部因素:例如环境温度、气压、风速、人为因素等,均有可能影响冻干仓加热板温度。

1、加热板本身故障或老化:加热板长期使用后可能会出现故障或老化,导致温度无法保持或持续下降。

2、供电或控制系统异常:加热板的供电或控制系统出现问题时,可能影响加热板的温度调节和控制,导致温度下降。

3、冻干仓内部条件改变:冻干仓内部温度、湿度、空气流通等条件发生变化时,可以对加热板的温度产生影响,导致温度下降。

4、冻干过程中的水分蒸发:在冻干过程中,物料严重脱水会导致温度下降,这是正常现象。

5、其他外部因素:例如环境温度、气压、风速、人为因素等,均有可能影响冻干仓加热板温度。

冻干过程温度变化

按照描述的现象:隔板不能制冷,加热泵一直运转。这就会产生两方面的问题:一个是冷阱虽然温度底却不如隔板温度控制精确,物料表面上结晶但内部却不一定冻实;还有一方面就是加热泵自身也会产热量还有冻干程序好想也有些问题。QQ:384465166 有事聊

冻干机降极限温度达不到是什么原因造成的

冻干机不制冷怎么回事?冷冻干燥机温度降不下去解决方案:

目前很多干燥方面用到冷冻干燥机,也叫冻干机,用的过程中难免出现一些使用问题,今天冻干机厂家给大家讲解下冷冻干燥机使用过程中不制冷的一些排除方法以及检修。

1,环境温度是否过高,冻干机进出风口是否被挡住,我们一般建议冷冻干燥机进出风口大于10CM不能有遮挡物,附近环境温度不能高于30度,因为比方说XY冷冻干燥机都是设置了高温保护,防止压缩机过热烧坏。

2,查看冷凝器是否有异物堵塞,引起排热效果不好。

3,检查冷凝风机是否正常运行

4,以上都是正常,那就要查看1,2级压缩机有没有启动,有可能已经保护停掉了,这样就需要联系厂家技术沟通怎么重新启动

5,如果还是不能制冷下去,就有可能制冷配件已经损坏,那么请及时联系厂家维修,以避免造成其他配件的损坏。

那么冻干机的制冷平时注意维护是怎么样的?XY冷冻干燥机,一般注意经常检查冷凝器是否脏,定期用毛刷清理下上面灰尘毛絮,坏境温度保持30度以下,必要时候可以开启空调,或者拿个电扇对着进风口吹,辅助热量带走,这样不仅仅保护设备稳定运行,也可以提燥的生产效益。

好了,对于真空冷冻干燥机的制冷方面的检修和维护,XY冻干机厂家就讲解到这 ,如果需了解更多的冷冻干燥机的维护方面技术,请多多关注欣谕冻干,这里有很多冻干方面的技术知识。

冻干技术的干燥

产品的干燥可分为二个阶段,在产品内的冻结冰消失之前称第一阶段干燥、也叫作升华干燥阶段。

产品在升华时要吸收热量,一克冰全部变成水蒸汽大约需要吸收670卡左右的热量,因此升华阶段必须对产品进行加热。但对产品的加热量是有限度的,不能使产品的温度超过其自身共熔点温度。升华的产品如果低于共熔点温度过多,则升华的速率降低,升华阶段的时间会延长;如果高于共熔点温度,则产品会发生熔化,干燥后的产品将发生体积缩小,出现气泡,颜色加深,溶解困难等现象。因此升华阶段产品的温度要求接近共熔点温度,但又不能超过共熔点温度。

由于产品升华时,升华面不是固定的。而是在不断的变化,并且随着升华的进行,冻结产品越来越少。因此造成对产品温度测量的困难,利用温度计来测量均会有一定的误差。

可以利用气压测量法来确定升华时产品的温度,把冻干箱和冷凝器之间的阀门迅速地关闭1-2秒的时间(切不可太长)。然后又迅速打开,在关闭的瞬间观察冻干箱内的压强升高情况,计下压强升高到某一点的最高数值。从冰的不同温度的饱和蒸汽压曲线或表上可以查出相应数值,这个温度值就是升华时产品的温度。

产品的温度也能通过对升华产品的电阻的测量来推断。如果测得产品的电阻大于共熔点时的电阻数值,则说明产品的温度低于共熔点的温度;如果测得的电阻接近共熔点时的电阻数值,则说明产品温度已接近或达到共熔点的温度。

冷冻干燥时冻干箱内的压强,过去认为是越低越好,则认为不是越低越好,而是要控制在一定的范围之内。

压强低当然有利于产品内冰的升华。但由于压强太低时对传热不利,产品不易获得热量,升华速率反而降低。实验标明:在冻干箱的压强低于0.1毫巴时,气体的对流传热小到可以忽略不计;而压强大于0.1毫巴时,气体的对流传热就明显增加。在同样的板层温度下,压强高于0.1毫巴时,产品容易获得热量,因而升华速率增加。

但是,当压强太高时,产品内冰的升华速率减慢,产品吸热量降减少。于是产品自身的温度上升,当高于共熔点温度时,产品将发生熔化,造成冻干失败。

冻干箱的合适压强一般认为是在0.1~0.3毫巴之间,在这个压强范围内,既利于热量的传递又利于升华的进行。超过0.3毫巴时,产品可能熔化,此时应发出真空报警信号,切断对产品的加热,甚至启动冷冻机对冻干箱进行降温,以保护产品不致发生熔化。

冻干箱内的压强是由空气的分压强和水蒸汽的分压强组成的,因此要使用能测量全压强的热真空计来测量真空度;而不宜使用压缩式真空计,以水银为介质的压缩式真空计由于水银蒸汽有害产品应禁止使用。

1克冰在压强0.1毫巴时大约能产生10000升体积的蒸汽,为了排除大量的水蒸汽,光靠机械真空泵排除是不行的。冷凝器作为冷却使大量水蒸汽凝结在其内部的制冷表面上,因此冷凝器实际上起着水蒸汽泵的作用。大量水蒸汽凝结时放出的热量能使冷凝器的温度发生回升,这是正常的现象。但由于冷凝器冷冻机的制冷能力不够,冷凝器吸附水蒸汽的表面太小,或对产品提供热量过多而产生过多的水蒸汽等原因,会引起冷凝器温度的过度回升。当发生这种情况时。冻干箱和冷凝器之间的水蒸汽压力差减小,从而导致升华速率的降低;与此同时冻干机系统内水蒸汽的分压强增强,使真空度恶化,进而又引起升华速率的减慢,产品吸收热量减少,产品温度上升,致使产品发生熔化,冻干失败。

因此为了冷冻干燥出好的产品,需要保持系统内良好而稳定的真空度。需要冷凝器始终能低于-40℃以下的低温,因为-40℃时冰的蒸汽压为0.1毫巴左右。

在升华干燥阶段,冻干箱的板层是产品热量的来源。板层温度高,产品获得的热量就多;板层温度低,产品获得的热量就少;板层温度过高,产品获得过多的热量使产品发生熔化;板层温度过低,产品得不到足够的热量会延长升华干燥时间。因此,板层的温度应进行合理的控制。

板层温度的高低应根据产品温度、冻干箱的压强(即冻干箱的真空度)、冷凝器温度三个因素来确定。如果在升华干燥的时候,产品的温度低于该产品的共熔点温度较多,冻干箱内的压强小于真空报警设定的压强较多,冷凝器温度也低于-40℃较多,则板层的加热温度还可以继续提高。如果板层温度提高到某一数值之后产品的温度已接近共熔点温度,或者冻干箱的压强上升到接近真空报警的数值或者冷凝器温度回升到-40℃,则板层温度不可再继续提高,不然会出现危险的情况。

实际上升华时板层温度的高低还与冻干机的性能有关,性能较好的冻干机,板层的加热温度可以升得高一些。

升华阶段时间的长短与下列因素有关:

产品的品种:有些产品容易干燥,有些产品不容易干燥。一般来说,共熔点温度较高的产品容易干燥,升华的时间短些。

产品的分装厚度:正常的干燥速率大约每小时使产品下降1毫米的厚度。因此分装厚度大,升华时间也长。

升华时提供的热量:升华时若提供的热量不足,则会减慢升华速率,延长升华阶段的时间。当然热量也不能过多地提供。

冻干机本身的性能,这包括冻干机的真空性能,冷凝器的温度和效能,甚至机器构造的几何形状等,性能良好的冻干机使升华阶段的时间较短些。

在产品的第一阶段时,除了要保持冻结产品的温度不能超过共熔点以外,还要保持已干燥的产品温度不能超过崩解温度。

所谓崩解温度是对已经干燥的产品而言的。已干燥的产品应该是疏松多乱,保持一个稳定的状态,以便下层冻结产品中升华的水蒸汽顺利通过,使全部的产品都良好的干燥。

但某些已干燥的产品当温度达到某一数值时会失去刚性,发生类似崩溃的现象,失去了疏松多乱的性质,使干燥产品有些发粘。比重增加,颜色加深。发生这种变化的温度就叫做崩解温度。

干燥产品发生崩解之后,阻碍或影响下层冻结产品升华的水蒸汽的通过,于是升华速度减慢冻结产品吸收热量减少,由板层继续供给的热量就有多余。将会造成冻结产品温度上升,产品发生熔化发泡现象。

崩解温度与产品的种类和性质有关,因此应该合理的选择产品的保护剂,使崩解温度尽可能高一些,例如产品的崩解温度应高于该产品的共熔点温度。

崩解温度一般由试验来确定,通过显微冷冻干燥试验可以观察到崩解现象,从而确定崩解温度。 一旦产品内冰升华完毕,产品的干燥变进入了第二阶段。在该阶段虽然产品内不存在冻结冰,但产品内还存在10%左右的水份,为了使产品达到合格的残余水份含量,必须对产品进一步的干燥。

在解吸阶段,可以使产品的温度迅速地上升到该产品的最高允许温度,并在该温度一直维持到冻干结束为止。迅速提高产品温度有利于降低产品残余水份含量和缩短解吸干燥的时间。产品的允许温度视产品的品种而定,一般为25℃-40℃左右。病毒性产品为25℃,细菌性产品为30℃,血清、抗菌素等可高达40℃。

在解吸干燥阶段由于产品内逸出水份的减少,冷凝器温度的下降又引起系统内水蒸汽压力的下降,这样往往使冻干箱的总压力下降到低于0.1毫巴,这就使冻干箱内对流的热传递几乎消失。因此,即使板层的温度已加热到产品的最高允许温度,但由于传热不良,产品温度上升很缓慢。

为了改进冻干箱传热,使产品温度较快地达到最高允许温度,以缩短解吸干燥阶段时间。要对冻干箱内的压强进行控制,控制的压强范围在0.15~0.3毫巴之间。一般使用校正漏孔法对冻干箱内的压强进行控制。在冻干机的真空系统上(大都在冻干箱上),安装一个人为的能校正的漏孔,由真空仪表进行控制;当冻干箱压强下降到低于真空仪表的下限设定值时,漏孔电磁阀打开,向冻干箱放入干燥灭菌的惰性气体,于是冻干箱内的压强上升,当压强上升到真空仪表的上限设定值时漏孔电磁阀关闭,停止进气,冻干箱内压强又下降,如此使冻干箱内的压强控制在设定范围内。

压强的控制也可采用间歇开关冻干箱和冷凝器之间阀门的方法,真空泵间歇运转的方法。以及冷凝器冷冻机间歇运转的方法等。

一旦产品温度达到许可温度之后,为了进一步降低产品内的残余水份含量,高真空的恢复是十分必要的。这时上述控制压强的方法应停止使用。与冻干箱恢复高真空的同时,冷凝器由于负荷减少温度下降也达到了最低的极限温度。这样使冻干箱和冷凝器之间水蒸汽压力差达到了最大值。这样的状况非常有利于产品内残余水份的逸出,一般应在状况不小于2小时的时间,时间越长产品内残余水份的含量越低。

解吸阶段的时间长短取决于下列因素:

产品的品种:产品不同,干燥的难易不同,同时产品不同,最高许可温度也不同,最高许可温度较高的产品,时间可相应短些。

残余水份的含量:残余水份的含量要求低的产品,干燥时间较长。产品的残余水份的含量应有利于该产品的长期存放,太高太低均不好。应根据试验来确定。

冻干机的性能:在解吸阶段后期能达到的真空度高,冷凝器的温度低的冻干机,其解吸干燥的时间可短些。

是否采用压强控制法:如果采用压强控制法,则改进了传热,使产品达到最高许可温度的时间缩短,吸解干燥的时间也缩短。

最后,冻干是否可以结束是这样来确定的:产品温度已达到最高许可温度,并在这个温度保持2小时以上的时间;关闭冻干箱和冷凝器之间的阀门,注意观察冻干箱的压力升高情况(这时关闭的时间应长些,约30秒到60秒)。如果冻干箱内的压力没有明显的升高,则说明干燥已基本完成,可以结束冻干。如果压力有明显升高,则说明还有水份逸出,要延长时间继续进行干燥。直到关闭冻干箱冷凝器之间的阀门之后无明显上升为止。

冻干技术的影响

冷冻干燥过程实际上是水的物质变化及其转移过程。含有大量水份的生物制品首先冻结成固体,然后在真空状态下固态冰直接升华成水蒸汽,水蒸汽又在冷凝器内凝华成冰霜,干燥结束后冰霜熔化排出。在冻干箱内得到了需要的冷冻干燥产品,干燥过程如图十七所示。

冻干过程有二个放热过程和二个吸收过程:液体生物制品放出热量凝固成固体生物制品,固体生物制品在真空下吸收热量升华成水蒸汽。水蒸汽在冷凝器中放出热量凝华成冰霜,冻干结束后冰霜在冷凝器中吸收热量熔化成水。

整个冻干过程中进行着热量质量的传递现象。热量的传递贯穿冷冻干燥的全过程中。预冻阶段:干燥的第一阶段和第二阶段以及化霜阶段均进行着热量的传递;质量的传递仅在干燥阶段进行,冻干箱制品中产生的水蒸汽到冷凝器内凝华成冰霜的过程,实际上也是质量传递的过程,只有发生了质量的传递产品才能获得干燥。在干燥阶段,热的传递是为了促进质的传递,改善热的传递也能改善质的传递。

如果在产品的升华过程中不提供热量,那么产品由于升华吸收自身的热量使温度下降,升华速率也逐渐下降,直到产品温度相等于冷凝器的表面温度,干燥便停止进行,这时从冻结产品到冷凝器表面的水蒸汽分子数与从冷凝器表面返回到冻结产品的水蒸汽分子数相等,冻干箱与冷凝器之间的水蒸汽压力等于零,达到平衡状态。

不如果一个外界热量加到冻结产品上,这个平衡状态被破坏,冻结产品的温度就高于冷凝器表面的温度,冻干箱和冷凝器之间便产生了水蒸汽压力差。形成了从冻干箱流向冷凝器的水蒸汽流。由于冷凝器制冷的表面凝华水蒸汽为冰霜,使冷凝器内的水蒸汽不断地被吸附掉,冷凝器内便保持较低的蒸汽压力;而冻干箱内流走的水蒸汽又不断被产品中发生的水蒸汽得到补充,维持冻干箱内较高的水蒸汽压力。这一过程的不断进行,使产品不断得到了干燥。

升华首先从产品的表面开始,在干燥进行了一段时间之后,在冻结产品上面形成了一层已干燥的产品,产生了干燥产品与冻结产品之间的交界面。交界面随着干燥的进行不断下降,直到升华完毕交界面消失。当产生了交界面之后,水分子要穿越这层已干燥的产品才能进入空间;水分子跑出交界面之后,进入已经干燥产品的某一间隔内。以后可能还要穿过许多这样的间隔后,才能从产品的缝隙进入空间。也可以经过一些转折又回到冻结产品之中,干燥产品内的间隔有时象迷宫一样。

当水分子跑出产品表面以后,它的运动路径还很曲折。可能与玻璃瓶壁碰撞,可能冻干机的金属板壁碰撞,也经常发生水分子之间的相互碰撞,然后进入冷凝器内。当水分子与冷凝器的制冷表面发生碰撞时,由于该表面的温度很低,低温表面吸收了水分子的能量,这样水分子便失去了动能,使其没有能量再离开冷凝器的制冷表面,于是水分子被“捕获”了。大量水分子捕获后在冷凝器表面形成一层冰霜,这样就降低了系统内的水蒸汽压力。使冻干箱的水蒸汽不断的流向冷凝器。随着时间的延长,冻干箱内不断对产品进行加热以及冷凝器的持久工作,产品逐渐得到了干燥。

干燥的速率与冻干箱和冷凝器之间的水蒸汽压力差成正比,与水蒸汽流动的阻力成反比。水蒸汽压力差越大,流动的阻力越小,则干燥的速率越快。水蒸汽的压力差取决与冷凝器的有效温度和产品温度的温度差。因此要尽可能地降低冷凝器的有效温度和最大限度地提高产品的温度。

水蒸汽的流动阻力来自以下几个方面:

产品内部的阻力,水分子通过已经干燥的产品层的阻力。这个阻力的大小与干燥层的结构与产品的种类、成份、浓度、保护剂等有关。

容器的阻力,容器的阻力主来自瓶口之处,因为瓶口的截面较小,瓶口处可能还有某些物品。例如:带槽的橡皮塞、纱布等,瓶口截面大,则阻力小。

机器本身的阻力。主要是冻干箱与冷凝器之间管道的阻力,管道粗、短、直则阻力小。另外阻力还与冻干箱的结构和几何形状有关。

提高冻干箱内产品的温度,能增加冻干箱内与水蒸汽压力,加速水蒸汽流向冷凝器,加快质的传递,增加干燥速率。但是提高产品的温度是有一定限度的,不能使产品温度超过共熔点的温度。

降低冷凝器的温度。也就降低了冷凝器内水蒸汽的压力,也能加速水蒸汽从冻干箱流向冷凝器。同样能加快质的传递,提燥速率。但是更多的降低冷凝器的温度需增加投资和运行费用。

减少水蒸汽的流动阻力也能加快质的传递,提燥速率。减小产品的分装厚度;合理的设计瓶、塞、减少瓶口阻力;合理的设计冻干机,减少机器的管道阻力;选择合适的浓度和保护剂,使干燥产品的结构疏松多乱,减少干燥层的阻力;试验最优的预冻方法,造成有利于升华的冰晶结构等。这些方法均能促进质的传递,提燥速率。

空气冷干机工作原理及常见故障排除?

冷冻干燥机的工作原理

冷冻干燥是利用升华的原理进行干燥的一种技术,是将被干燥的物质在低温下快速冻结,然后在适当的真空环境下,使冻结的水分子直接升华成为水蒸气逸出的过程. 冷冻干燥得到的产物称作冻干物(lyophilizer),该过程称作冻干(lyophilization)。

物质在干燥前始终处于低温(冻结状态),同时冰晶均匀分布于物质中,升华过程不会因脱水而发生浓缩现象,避免了由水蒸气产生泡沫、氧化等副作用。干燥物质呈干海绵多孔状,体积基本不变,极易溶于水而恢复原状。在最大程度上防止干燥物质的理化和生物学方面的变性。

冷冻干燥机系由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。主要部件为干燥箱、凝结器、冷冻机组、真空泵、加热/冷却装置等。它的工作原理是将被干燥的物品先冻结到三相点温度以下,然后在真空条件下使物品中的固态水份(冰)直接升华成水蒸气,从物品中排除,使物品干燥。物料经前处理后,被送入速冻仓冻结,再送入干燥仓升华脱水,之后在后处理车间包装。真空系统为升华干燥仓建立低气压条件,加热系统向物料提供升华潜热,制冷系统向冷阱和干燥室提供所需的冷量。 本设备采用高效辐射加热,物料受热均匀;采用高效捕水冷阱,并可实现快速化霜;采用高效真空机组,并可实现油水分离;采用并联集中制冷系统,多路按需供冷,工况稳定,有利节能;采用人工智能控制,控制精度高,操作方便。

对冻干制品的质量要求是:生物活性不变、外观色泽均匀、形态饱满、结构牢固、溶解速度快,残余水分低。要获得高质量的制品,对冻干的理论和工艺应有一个比较全面的了解。冻干工艺包括预冻、升华和再冻干三个分阶段。合理而有效地缩短冻干的周期在工业生产上具有明显的经济价值。

一 制品的冻结

溶液速冻时(每分钟降温10~50℃),晶粒保持在显微镜下可见的大小;相反慢冻时(1℃/分),形成的结晶肉眼可见。粗晶在升华留下较大的空隙,可以提高冻干的效率,细晶在升华后留下的间隙较小,使下层升华受阻,速成冻的成品粒子细腻,外观均匀,比表面积大,多孔结构好,溶解速度快,便成品的引湿性相对也要强些。

药品在冻干机中预冻在两种方式:一种是制品与干燥箱同时降温,;另一种是待干燥箱搁板降温至-40℃左右,再将制品放入,前者相当于慢冻,后者则介于速冻与慢冻之间,因而常被采用,以兼顾冻干效率与产品质量。此法的缺点是制品入箱时,空气中的水蒸气将迅速地凝结在搁板上,而在升华初期,若板升温较快,由于大面积的升华将有可能超越凝结器的正常负荷。此现象在夏季尤为显著。

制品的冻结处于静止状态。经验证明,过冷现象容易发生至使制品温度虽已达到共晶点。但溶质仍不结晶,为了克服过冷现象,制品冻结的温度应低于共晶点以下一个范围,并需保持一段时间,以待制品完全冻结。

二升华的条件与速度

冰在一定温度下的饱和蒸汽压大于环境的水蒸气分压时即可开始升华;比制品温更低的凝结器对水水蒸气的抽吸与捕获作用,则是维护升所必需的条件。

气体分子在两次连续碰撞之间所走的距离称为平均自由程,它与压力成反比。在常压下,其值很小,升华的水分子很容易与气体碰撞又返回到蒸汽源表面,因而升华速度很漫。随着压力降低13.3Pa以下,平均自由程增大105倍,使升华速度显著加快,飞离出来的水分子很少改变自己的方面,从而形成了定向的蒸汽流。

真空泵在冻干机中起着抽除永久气体的作用,以维护升华所必需的低压强。1g水蒸气在常压下为1.25L而在13.3Pa时却膨胀为10000升,普通的真空泵在单位时间内抽除如此大量的体积是不可能的。凝结器实际上形成了专门捕集水蒸气的真空泵。

制品与凝结的温度通常为-25℃与-50℃。冰在该温度下的饱和蒸汽压分别为63.3Pa与1.1Pa,因而在升华面与冷凝面之间便产生了一个相当大的压力差,如果此时系统内的不凝性气体分压可以忽略不计,它将促使制品升华出来的水蒸气,以一定的流速定向地抵达凝结器表面结成冰霜。

冰的升华热约为2822J/克,如果升华过程不供给热量,那末制品只有降低内能来补偿升华热,直至其温度与凝结器温度平衡后,升华也就停止了。为了保持升华与冷凝来的温度差,必须对制品提供足够的热量。

三升华过程

在升温的第一阶段(大量升华阶段),制品温度要低于其共晶点一个范围。因此搁板温要加以控制,若制品已经部分干燥,但温度却超过了其共晶点,此时将发生制品融化现象,而此时融化的液体,对冰饱和,对溶质却未饱和,因而干燥的溶质将迅速溶解进去,最后浓缩成一薄僵块,外观极为不良,溶解速度很差,若制品的融化发生在大量升华后期,则由于融化的液体数量较少,因而被干燥的孔性固体所吸收,造成冻干后块状物有所缺损,加水溶解时仍能发现溶解速度较慢。

在大量升华过程,虽然搁板和制品温度有很大悬殊,但由于板温、凝结器温度和真空温度基本不变,因而升华吸热比较稳定,制品温度相对恒定。随着制品自上而下层层干燥,冰层升华的阻力逐渐增大。制品温度相应也会小幅上升。直至用肉眼已不到冰晶的存在。此时90%以上的水分已除去。大量升华的过程至此已基本结束,为了确保整箱制品大量升华完毕,板温仍需保持一个阶段后再进行第二阶段的升温。剩余百分之几的水分称残余水分,它与自由状态的水在物理化学性质上有所不同,残余水分包括了化学结合之水与物理结合之水,诸如化合的结晶水结晶、蛋白质通过氢键结合的水以及固体表面或毛细管中吸附水等。由于残余水分受到某种引力的束缚,其饱和蒸汽压则是不同程度的降低,因而干燥速度明显下降。虽然提高制品温度促进残余水分的气化,但若超过某极限温度,生物活性也可能急剧下降。保证制品安全的最燥温度要由实验来确定。通常我们在第二阶段将板温+30℃左右,并保持恒定。在这一阶段初期,由于板温升高,残余水分少又不易气化,因此制品温度上升较快。但随着制品温度与板温逐渐靠拢,热传导变得更为缓慢,需要耐心等待相当长的一段时间,实践经验表明,残余水分干燥的时间与大量升华的时间几乎相等有时甚至还会超过。

四冻干曲线

将搁板温度与制品温度随时间的变化记录下来,即可得到冻干曲线。比较典型的冻干曲线系将搁板升温分为两个阶段,在大量升华时搁板温度保持较低,根据实际情况,一般可控制在-10至+10之间。第二阶段则根据制品性质将搁板温度适当调高,此法适用于其熔点较低的制品。若对制品的性能尚不清楚,机器性能较差或其工作不够稳定时,用此法也比较稳妥。

如果制品共晶点较高,系统的真空度也能保持良好,凝结器的制冷能力充裕,则也可采用一定的升温速度,将搁板温度升高至允许的最高温度,直至冻干结束,但也需保证制品在大量升华时的温度不得超过共晶点。

若制品对热不稳定,则第二阶段板温不宜过高。为了提高第一阶段的升华速度,可将搁板温度一次升高至制品允许的最高温度以上;待大量升华阶段基本结束时,再将板温降至允许的最高温度,这后两种方式虽然使大量的升华速度有一些提高,但其抗干扰的能力相应降低,真空度和制冷能力的突然降低或停电都可能会使制品融化。合理而灵活地掌握第一种方式,仍是目前较常用的方式。

冷冻干燥的原理

由物理学可知,水有三相,O点为三相共点,OA为冰的融解点。根据压力减小、沸点下降的原理,只要压力在三相点压力之下(图中压力为 646.5Pa以下,温度0℃以下),物料中的水分则可从水不经过液相而直接升华为水汽。根据这个原理,就可以先将食品的湿原料冻结至冰点之下,使原料中的水分变为固态冰,然后在适当的真空环境下,将冰直接转化为蒸汽而除去,再用真空系统中的水汽凝结器将水蒸汽冷凝,从而使物料得到干燥。这种利用真空冷冻获得干燥的方法,是水的物态变化和移动的过程,这个过程发生在低温低压下,因此,冷冻干燥的基本原理是在低温低压下传热传质的机理 。

冷冻干燥不同于普通的加热干燥,物料中的水分基本上在0℃以下的冰冻的固体表面升华而进行干燥,物质本身则剩留在冻结时的冰架子中,因此,干燥后的产品体积不变、疏松多孔。冰在升华时需要热量,必须对物料进行适当加热,并使加热板与物料升华表面形成一定温度梯度,以利于传热的顺利进行。

制品的冷冻干燥过程包括冻结、升华和再干燥3个阶段。 在升华阶段内,冰大量升华,此时制品的温度不宜超过最低共熔点,以防产品中产生僵块或产品外观上的缺损,在此阶段内搁板温度通常控制在±10℃之间。制品的再干燥阶段所除去的水分为结合水分,此时固体表面的水蒸气压呈不同程度的降低,干燥速度明显下降。在保证产品质量的前提下,在此阶段内应适当提高搁板温度,以利于水分的蒸发,一般是将搁板加热至30~35。C,实际操作应按制品的冻干曲线(事先经多次实验绘制的温度、时间、真空度曲线)进行,直至制品温度与搁板温度重合达到干燥为止。

冷冻干燥分为哪几个阶段?

数显冷冻干燥机由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。与传统干燥方式不同,数显冷冻干燥机的过程可以分为四个阶段:预处理~冷冻阶段~初级干燥~二次干燥。

1.预处理:包括在冷冻之前处理产品的任何方法,例如浓缩产品,配方修订,降低高蒸气压溶剂或增加表面积。食品块通常经过IQF处理,使其在数显冷冻干燥机前自由流动。在许多情况下,预处理产品的方法是基于数显冷冻干燥机的理论知识及其要求而定,目的是减少干燥时间或提升产品质量。

2.冷冻阶段:材料被冷却到其三相点以下,这确保了在以下步骤中将发生升华而不是熔化。大冰晶在产品内形成网络,促进升华过程中水蒸气的快速去除,形成大冰晶有利于更快、更有效的数显冷冻干燥机,为了形成更大的冰晶,产品应该缓慢冷冻。冷冻阶段在整个数显冷冻干燥机过程中是关键的,因为冷冻方法可以影响数显冷冻干燥机循环的持续时间和产品稳定性。

结构敏感货物在需要保存结构的情况下,如食物或具有以前活细胞的物体,大的冰晶将破坏细胞壁,这可能导致越来越差的质地和营养成分的损失。在这种情况下,快速完成冷冻,以便将材料快速降低到其共晶点以下,从而避免形成大的冰晶。通常,冷冻温度在-50°C至-80°C之间。

3.初级干燥:本阶段期间压力降低,并且向材料供应足够的热量以使冰升华,可以使用升华分子的升华潜热来计算所需的热量。在该初始干燥阶段,材料中约95%的水升华。这个阶段可能很慢,因为如果加入太多的热量,材料的结构可能会改变。在该阶段,通过施加部分真空来控制压力,真空加速了升华,使其成为一种有意识的干燥过程。

需要注意的是,在这个压力范围内,热量主要来自传导或辐射,由于空气密度低,对流效应可以忽略不计。

4.二次干燥:初级干燥阶段除去了冰,而本阶段旨在去除未冻结的水分子,这一阶段干燥时间取决于材料的吸附等温线。在该阶段,温度升高至高于初级干燥阶段,甚至可以高于0℃,以破坏水分子与冷冻材料之间形成的任何物理-化学相互作用。通常在该阶段降低压力以促进解吸,然而有些产品也受益于增加的压力。

在数显冷冻干燥机过程完成后,在密封材料之前,通常用惰性气体如氮气破坏真空。在操作结束时,产品中的终残留水含量极低,约为1%~4%。

保温机显示温度持续下降

原因如下情况一:有可能是发热管坏了观察,是温度上升到设定值时,继电器断开;还是温度下降到设定值时,继电器吸合。看它的工作过程。情况二:可以找到温度传感器的位置,用手握住传感器看看温度显示的是不是你的体温,如果是,那就是温控器不好,如果显示温度还是乱跳,那就是传感器坏了,更换一个应该就好了

真空冷冻干燥机刚开机为什么不制冷感觉冷气进不了后仓 而且中压表在零一下

真空冷冻干燥机和其它干燥方法一样,要维持升华干燥的不断进行,必须满足两个基本条件,即热量的不断供给和生成蒸汽的不断排除。在开始阶段,如果物料温度相对较高,升华所需要的潜热可取自物料本身的显热。但随着升华的进行,物料温度很快就降到与干燥室蒸汽分压相平衡的温度,此时,若没有外界供热,升华干燥便停止进行。在外界供热的情况下,升华所生成的蒸汽如果不及时排除,蒸汽分压就会升高,物料温度也随之升高,当达到物料的冻结点时,物料中的冰晶就会融化,冷冻干燥也就无法进行了。真空冷冻干燥机的加热方式: ①接触传热方式 这是一种最简单的加热方法,在干燥室内设置可加热的多层搁板,上面放置装有被干燥食品的干燥盘。利用干燥盘与搁板接触传导加热。在这种情况下。加热搁板与干燥盘,干燥盘与干燥食品间不能完全良好地接触,因此利用这种方法进行加热时,干燥时间多少较其它方法长些,但其优点是干燥是构造简单,并可充分利用空间。 ②复式加热方式 接触传导仅加热食品的一面,而在本法中被干燥的食品两面都与加热板接触,因此传热良好而可缩短干燥时间,所采用的方式将被干燥食品在与加热板接触前,先以金属网状铝板夹住,以打开升华时水蒸汽的通道并减少其阻力,然后用液压加上搁板,使之与网状铝板接触,此法优点是可缩短干燥时间,但为能与上搁板接触,搁板必须是活动的,因此必须使用液压装置,而导致构造复杂,并降低干燥室的利用率,故设备费用高昂,此外,对非平面而不定形被干燥食品,则有不能充分发挥效果的缺点。 ③有钉板加热方式 这是上述复式加热方式的变形,此法是利用装有多枚钉子的2片加热板将被干燥食品夹在中间以进行加热,这种方式的加热接触面积扩大到被干燥食品的内部,因而能有效地进行热供给,利用此方式,干燥时间可大幅度缩短,这正是被希望的方式,但相反的是,大量处理被干燥食品时,干燥前与干燥后的操作繁杂,需要人力与时间,另外还涉及卫生的问题,因此在实用规模装置上几乎都不采用。 ④辐射加热方式 此种方式是将被加热干燥的食品置于干燥盘或干燥网上,然后插入两片加热板之间,使之不与加热板接触,而由加热板辐射来供给热量,因此加热板可加热到容许温度以上的高温,而被干燥食品的温度则保持在容许温度之内,这样可以缩短干燥时间,且被干燥食品的形状若不是定型时也不会有所妨碍。干燥前后的操作也很容易,特别是在大型连续干燥装置中更加有效,已经设计出适当的控制方式,并提高加热板的辐射能转换效率,其干燥时间已缩短至可以与复式加热相匹敌的程度,因此,该加热方式已演变成冻干食品设备的基本形式。 ⑤微波加热方式 微波照射能使不同形状的食品内外都得到加热,大大缩短干燥时间(约10%~20%)。此外,干燥室的利用率也较高。尽管微波加热具有明显的优点,但是到目前为止还没有在工业上成功的例子。这是因为产生微波形式的能量是昂贵的,其费用为蒸汽费用的10~20倍。另外,微波加热过程很难控制。如果供热量有余,会导致升华界面有少量冰融化,而水的介电常数比冰的介电常数大得多,水将吸收更多的热量使温度升高而使更多的冰融化,最终导致干燥失败。 ⑥红外线加热 在干燥室安装红外线发生器产生红外线辐射。但由于其维持费用相当高,故很少应用于冷冻干燥食品方面。综上所述,各种加热方法各有其特点。人们在不断认识冻干过程本质的基础上,探索出了多种加热、辐射的组合,如传导-辐射加热法、传导-微波加热法、辐射-微波加热法等。其目的都是期望能在保证产品质量的前提下,提燥速率,降低能耗。

冻干机是先升温还是降温

客户在使用冻干机过程当中严格遵守使用规则和注意事项,可以提高最终样品的冻干质量和效果。以下列出几点:

1、在冻干之前,把需要冻干的制品分装在合适的容器内,一般是玻璃模子瓶、玻璃管子瓶,装量要均匀,蒸发表面尽量大而厚度尽量薄一些;

2、然后放入与冻干箱板层尺寸相适应的金属盘内。对瓶装一般采用脱底盘,有利于热量的有效传递。

3、装箱之前,先将冻干箱进行空箱降温,然后将制品放入冻干箱内进行预冻;或者将制品放入冻干箱内板层上同时进行预冻;

4、抽真空之前要根据冷阱制冷机的降温速度提前使冷阱工作,抽真空时冷阱至少应达到-40℃的温度;

5、待真空度达到一定数值后(通常应达到13Pa~26Pa内的真空度),或者有的冻干工艺要求达到所要求的真空度后继续抽真空1~2h以上;即可对箱内制品进行加热。一般加热分两步进行,第一步加温不使制品的温度超过共熔点或称共晶点的温度;待制品内水分基本干完后进行第二步加温,这时可迅速地使制品上升至规定的最高许可温度。在最高许可温度保持2h以上后,即可结束冻干。

637867800767750132780.jpg

整个升华干燥的时间约12~24h左右有的甚至更长,与制品在每瓶内的装量,总装量,玻璃容器的形状、规格,制品的种类,冻干曲线及机器的性能等等都有关系。

冻干结束后,要充入干燥无菌的空气(有条件的接入氮气瓶)进入干燥箱,然后尽快地进行加塞封口(西林瓶装样品可以直接在冻干仓内真空状态下电动压盖封装),以防重新吸收空气中的水分。

在冻干过程中,把制品和板层的温度、冷阱温度和真空度对照时间画成曲线,叫做冻干曲线。一般以温度为纵坐标,时间为横坐标。冻干不同的制品采用不同的冻干曲线。同一制品使用不同的冻干曲线时,制品的质量也不相同,冻干曲线还与冻干机的性能有关。因此不同的制品,不同的冻干机应用不同的冻干曲线。

骏德仪器箱式冻干机FD-503功能推荐:

1,原位预冻功能

2,电动压盖真空封装功能

3,一键冻干功能,冻干曲线PDF导出功能

4,真空度智能调节功能